If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-130=-16t^2+4t
We move all terms to the left:
-130-(-16t^2+4t)=0
We get rid of parentheses
16t^2-4t-130=0
a = 16; b = -4; c = -130;
Δ = b2-4ac
Δ = -42-4·16·(-130)
Δ = 8336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8336}=\sqrt{16*521}=\sqrt{16}*\sqrt{521}=4\sqrt{521}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{521}}{2*16}=\frac{4-4\sqrt{521}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{521}}{2*16}=\frac{4+4\sqrt{521}}{32} $
| 7^8x-2=40 | | x-10+x=180 | | -6+8j=2j | | 80+3x+40=180 | | -5-3b=30 | | 50+2*x=60 | | x^2+49=20 | | -6y+10=2(2y+10) | | 50+2•x=60 | | 15x+30=45* | | 9=(−6)-3x | | x*4+8(-1/3x+170/3)=620 | | 24x-8=-188x+13 | | 3*n=-27 | | 14+.8y=23 | | 42x=23 | | 2.5x+x=3 | | -(m-2)=0 | | (0.9*x)+(0.6x)=1/3 | | 4(z+5)–2z=40 | | c=(64-32)5/9 | | (0.9*x)+(0.6x)=0.33 | | x^2=x+66 | | -7/8x=203/4 | | 8x-12+16=4x+180 | | 6(p+24)=10 | | -10+5x=-82-3x | | x=0.6x+0.1 | | 5a(-a+2)^4-5a=0 | | 2x+6(-3)=x+8(5)=x-22 | | 6(w+2)+3w=27 | | 9n/n^2+14=1 |